Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Commun Biol ; 5(1): 1170, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2106509

ABSTRACT

The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, binds to human ACE2, initiated by at least one protomer's receptor binding domain (RBD) switching from a "down" (closed) to an "up" (open) state. Here, we used large-scale molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations with more than a thousand windows and an aggregate total of 160 µs of simulation to investigate this transition with and without glycans. We find that the glycosylated spike has a higher barrier to opening and also energetically favors the down state over the up state. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state, while glycans at N165 and N343 can stabilize both the down and up states. Finally, we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the BD-368-2 antibody's epitope is continuously exposed, explaining its high efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A , Polysaccharides , Epitopes
3.
Chemical science ; 12(4):1513-1527, 2020.
Article in English | EuropePMC | ID: covidwho-1766761

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics.

4.
J Phys Chem Lett ; 12(17): 4195-4202, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1387119

ABSTRACT

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.


Subject(s)
Drug Design , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biocatalysis , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protons , Quantum Theory , SARS-CoV-2/isolation & purification , Thermodynamics , Viral Matrix Proteins/metabolism
5.
J Phys Chem Lett ; 12(23): 5494-5502, 2021 Jun 17.
Article in English | MEDLINE | ID: covidwho-1258538

ABSTRACT

SARS-CoV and SARS-CoV-2 bind to the human ACE2 receptor in practically identical conformations, although several residues of the receptor-binding domain (RBD) differ between them. Herein, we have used molecular dynamics (MD) simulations, machine learning (ML), and free-energy perturbation (FEP) calculations to elucidate the differences in binding by the two viruses. Although only subtle differences were observed from the initial MD simulations of the two RBD-ACE2 complexes, ML identified the individual residues with the most distinctive ACE2 interactions, many of which have been highlighted in previous experimental studies. FEP calculations quantified the corresponding differences in binding free energies to ACE2, and examination of MD trajectories provided structural explanations for these differences. Lastly, the energetics of emerging SARS-CoV-2 mutations were studied, showing that the affinity of the RBD for ACE2 is increased by N501Y and E484K mutations but is slightly decreased by K417N.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Machine Learning , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , Humans , Models, Molecular , Molecular Dynamics Simulation
6.
Chem Commun (Camb) ; 57(48): 5949-5952, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1238024

ABSTRACT

We report a distinct difference in the interactions of the glycans of the host-cell receptor, ACE2, with SARS-CoV-2 and SARS-CoV S-protein receptor-binding domains (RBDs). Our analysis demonstrates that the ACE2 glycan at N322 enhances interactions with the SARS-CoV-2 RBD while the ACE2 glycan at N90 may offer protection against infections of both coronaviruses depending on its composition. The interactions of the ACE2 glycan at N322 with SARS-CoV RBD are blocked by the presence of the RBD glycan at N357 of the SARS-CoV RBD. The absence of this glycosylation site on SARS-CoV-2 RBD may enhance its binding with ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Polysaccharides/metabolism , SARS-CoV-2/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry
7.
Chem Sci ; 12(4): 1513-1527, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1083334

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

SELECTION OF CITATIONS
SEARCH DETAIL